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Cellular automata (CA) have been increasingly used in simulating urban expansion and
land-use dynamics. However, most urban CA models rely on empirical data for deriving
transition rules, assuming that the historical trend will continue into the future. Such
inertia CA models do not take into account possible external interventions, particularly
planning policies, and thus have rarely been used in urban and land-use planning. This
paper proposes to use artificial immune systems (AIS) as a technique for incorporating
external interventions and generating alternatives in urban simulation. Inspired by
biological immune systems, the primary process of AIS is the evolution of a set of
‘antibodies’ that are capable of learning through interactions with a set of sample
‘antigens’. These ‘antibodies’ finally get ‘matured’ and can be used to identify/classify
other ‘antigens’. An AIS-based CA model incorporates planning policies by altering the
evolution mechanism of the ‘antibodies’. Such a model is capable of generating different
scenarios of urban development under different land-use policies, with which the plan-
ners will be able to answer ‘what if’ questions and to evaluate different options. We
applied an AIS-based CA model to the simulation of urban agglomeration development
in the Pearl River Delta in southern China. Our experiments demonstrate that the
proposed model can be very useful in exploring various planning scenarios of urban
development.

Keywords: artificial immune system; urban planning; cellular automata; urban
simulation

1. Introduction

Cities are complex systems characterized by self-organization, self-similarity, emergence,
and a non-linear behavior of land-use dynamics (Barredo et al. 2003). Urban expansion is
consequently a complex process that involves multiple actors with different behaviors at
various spatial and temporal scales (Lambin and Geist 2001, Barredo et al. 2003, He et al.
2006). Urban expansion is difficult to model using traditional ‘top-down’ models, as these
models are largely static and linear, not so capable of dealing with the complexity in urban
systems (Li and Liu 2007).

Cellular automata (CA), a branch of artificial life research (He et al. 2006), are a type of
‘bottom-up’ models. Its general idea is to apply transition rules to local subsystems and let all
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the local evolutions display the global pattern (White and Engelen 1997, He et al. 2006). CA
have become a convenient and effective instrument to simulate non-linear and stochastic
processes in complex systems (He et al. 2006). In spatial analysis, CA have been used to
represent spatial interactions among subsystems and generate complex global patterns with
simple local rules (Shi and Pang 2000, Liu et al. 2007). CA have many advantages for
modeling complicated geographical phenomena (Torrens and O’Sullivan 2001). First,
complex global spatial patterns can be generated by a set of simple local rules. This
‘bottom-up’ approach coincides with complexity theories stating that a complex system
comes from the interactions of simple subsystems (Couclelis 1985, Liu et al. 2007). Second,
CA provide process analysis functions for simulating the evolution of complex geographical
systems (Torrens and O’Sullivan 2001). Lastly, the spatial framework of CA is perfectly
matched to raster GIS (geographic information system), remote sensing, and digital photo-
grammetry, so a CA model can be easily coupled with GIS and remote-sensing analysis
(White and Engelen 1994). CA have been considered to be a powerful tool for urban process
modeling (Couclelis 1997), and in the last two decades there has been an increasing number
of studies on using CA to simulate urban expansion and land-use dynamics (White and
Engelen 1993, Batty and Xie 1994, Clarke and Gaydos 1998, Wu 1998, Li and Yeh 2000,
2002). Studies have shown that a ‘bottom-up’ model like CA is more appropriate to
represent the spatial process of urban expansion (White and Engelen 1993, Batty and Xie
1994, Li and Yeh 2000, Wu 2002).

Tobler (1970) was perhaps the first to approbate the advantage of CA models in solving
complex geographical problems (White and Engelen 1993, Li and Yeh 2004). He applied
CA models to simulate the expansion of Detroit City in the Great Lakes area in the USA
(Tobler 1970). At the end of the 1980s, Couclelis (1988) put forward the theoretical frame-
work for geography-oriented CA and applied it to the simulation of urban expansion
(Couclelis 1985, 1989) and population dynamics (Couclelis 1988). Batty is one of the
pioneers who presented a class of urban models called DUEM and used it to simulate
urban dynamics in the city of Buffalo (Batty and Xie 1994, 1997). White et al. (1997)
developed a CA model to simulate the land-use pattern of Cincinnati, Ohio; Clarke et al.
(1997) have been successful in integrating remote-sensing data and CA to simulate the
development of the San Francisco Bay and Washington by using SLEUTH model; Li and
Yeh (2000) were among the pioneers to integrate CA and GIS and used the integrated system
to simulate the rapid urban expansion in the Pearl River Delta, China. Although many CA
models have been built over the last 20 years, few models are operational as a tool to support
land-use planning. This particular lack of applications may be related to the fact that so far
most urban CA models derive their transition rules largely from empirical data, assuming
that the historical trend of urban development will continue into the future. Such inertia
simulations of CA do not take into account possible external interventions – particularly
planning policies that may intend to advocate certain development philosophies like sustain-
ability – and are not able to generate alternative scenarios that are often required in planning
for option evaluation. Recently, researchers have started to explore methodologies to
incorporate planning objectives into CA models. Ward and Murray (1999) proposed a CA
model that simulates local decision-making processes, which was integrated with an opti-
mization framework that addressed issues of sustainable urban development. Yeh and Li
(2003) proposed a neural-network-based CA model that can be developed to simulate
development alternatives for urban planning. Deal and Schunk (2004) built the land-use
evolution and impact assessment model, which can integrate cellular micro-models and
regionalized macro social-economic model into a single model framework. Ward et al.
(2003) developed a land-use planning model by integrating a regional scale optimization
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model with a local-scale CA model. These studies show that CA have a great potential as a
planning tool for urban development.

Transition rules are essential in urban CA. These rules are represented by the parameters
and weights associated with the spatial variables involved in the simulation (Liu et al. 2008).
Usually, empirical data are used to derive these parameters and weights according to
calibration procedures. Some calibration techniques have been proposed to determine
these parameter values, such as visual test (Clarke et al. 1997), multiple criteria evaluation
(Wu and Webster 1998), logistic regression (Wu 2002), and fuzzy set (Liu and Stuart 2003).
Recently, artificial intelligence techniques have been increasingly incorporated in urban CA
models, including artificial neural networks (ANNs) (Li and Yeh 2002) and kernel-based
learning machines (Liu et al. 2007). However, ANN does not give insight into the relations
actually used in modeling, leaving the user uninformed about the possible lack of causality in
the relations that are used in the model. Kernel-based model is also constrained by the use of
implicit transition rules and the need of intensive computation. Most of these methods
assume that transition rules are constant in the spatiotemporal dimension. However, the
static transition rules may not be suitable for simulating complex geographical phenomena at
a large regional scale, because these rules cannot capture the influences of unexplained
variables and thus reflect complex relationships.

In this paper, we examine the potential of artificial immune systems (AIS) as a technique
for incorporating external interventions into the transition rules of CA. AIS is a computa-
tional intelligence method first proposed by Jerne (1974). Inspired by natural biological
systems, AIS mimics the form and function of biological antibodies in learning and
memorizing new information, recalling previously learned information, and performing
pattern recognition in a highly decentralized fashion. Since it was proposed, AIS has been
used in many applications such as pattern recognition (Carter 2000), intelligent optimization
(Chun et al. 1997), machine learning (Timmis 2000), adaptive control (Kumark and
Neidhoefer 1997), and fault detection (Dasgupta and Forrest 1995). However, applications
of AIS in geosciences are far less reported, except application in remote-sensing classifica-
tion (Zhong et al. 2007). Actually, the features of self-adapting, self-learning, and memoriz-
ing of AIS make it promising in solving complex geographical problems. AIS is appropriate
to recognize land-use dynamics, the antigens are used to describe urban dynamics and the
antibodies are like media to store urban dynamics information extracted from antigens
through ‘training’. The information stored in the antibodies is then applied to the queried
data to recognize them. Furthermore, AIS is especially appropriate to urban planning, since it
is a good way to incorporate external interventions such as planning objectives because of its
mutation mechanism. If planning objectives are embedded into the mutation process, which
control the orientation of mutation, the antibodies will gradually ‘evolve’ toward the
predefined planning objectives and finally reach the planner’s intentions.

This paper presents a newmethod on the use of AIS to construct transition rules for urban
CA modeling. The ‘antibodies’ form a problem solver and their evolutions are more suitable
for representing dynamic transition rules. The use of discrete ‘antibodies’ can provide a
powerful tool to capture the complexities exhibited in many geographical phenomena,
which may have exceptions, irregularities, and variations. Particularly, we demonstrate
how an antigen–antibody process can be used to derive transition rules that address both
historical data and planning policies. The next section introduces some basics of AIS,
followed by a section detailing the AIS’ derivation of transition rules for urban CA models.
The second half of the paper presents a case study of simulating urban agglomeration
development in the Pearl River Delta in southern China. Some conclusions we draw from
this work about using AIS-based urban CA models are put at the end of this paper.
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2. Basics of AIS

There is an increasing interest in using biological immune systems as a metaphor for
developing computational intelligence approaches. From a computing standpoint, biological
immune systems are parallel, self-adapting, self-learning, self-organizing, distributed, and
capable of complex behaviors (King et al. 2001). Inspired by theoretical immunology and
observed immune system functions, AIS emerged as a computational intelligence technique
for solving complex problems (Tarakanov and Dasgupta 2000).

A biological immune system consists of a complex of cells, molecules, and organs
that aim to protect the biological body against infection. The defense mechanism is
based on the adaptive immune responses, in which antibodies evolve to obtain stronger
capability of dealing with certain antigens (de Castro and Timmis 2002). This type of
response is explained by the clonal selection principle (Burnet 1959), which states that
only those antibodies with high affinities to certain antigens are selected to proliferate.
The selection continues and the affinities of antibodies to the antigens get improved
from generation to generation. This is also referred to as the maturing process of
antibodies.

An AIS implements an information memorizing and processing mechanism similar
to that of a biological immune system. It imitates a biological system by adapting a set of
‘antibodies’ through responding to a set of known ‘antigens’, and then by using ‘matured
antibodies’ to process unknown ‘antigens’. The known ‘antigens’ serve as the training
set, in which each ‘antigen’ contains both problem description and solution. The ‘anti-
bodies’ form a problem solver (e.g., a classifier) and their adaptations or evolutions are
essentially the training process. Once the ‘antibodies’ are ‘matured’, that is, the problem
solver is trained, they can be used to solve new problems represented by unknown
‘antigens’.

AIS is feasible, a finite number of ‘antibodies’ recognize an effectively infinite number
of known ‘antigens’ (Perelson and Oster 1979), that is to say, the number of ‘antibodies’ can
be much smaller than the number of known ‘antigens’, so basically this is a way to derive
generalized ‘rules’. Specifically in a land-use CA model, ‘antigens’ are the cells to be
classified in the simulation and ‘antibodies’ are the classifiers that will assign different
land-use types to cells based on their features.

3. Using AIS to construct transition rules for CA

As a machine-learning technique, an AIS can derive transition rules for CA from historical
data. This section describes the basic process of using AIS to construct transition rules for
land-use CA. In the next section, we will discuss the details of using AIS to incorporate
external interventions into CA land-use modeling.

3.1. Definition of antigen in geographical CA

In the proposed AIS-based CA model, each antigen contains information about the cell. The
antigen is represented as a vector consisting of two parts: attributes (features) and state
conversion (solution). The attribute part includes proximity variables and a variable of land-
use type. The proximity variables may cover distance to road, distance to city center,
distance to railway, etc. Similar to other studies (Wu 2002, Li and Yeh 2006, Liu and Li
2008), the neighborhood is not included in the attribute part of the antigen because the
neighborhood density changes along with the simulation. The state conversion part records
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if the state of the cell will be converted or not (e.g., urbanized or not). Formally, an antigen
can then be represented as follows:

Ag ¼ ða1; a2;&; aN ; ; SÞ (1)

where a1; a2; � � � ; aN are the attributes of antigen Ag and N is the total number of the
attributes; S is a Boolean variable that uses 1 to represent the state of being urbanized and
0 for otherwise. Note that the attributes should be normalized so that their values are
comparable. In this study, we normalized all the attributes to the range of 0–1.

3.2. Antibody initialization and affinity calculation

An antibody can also be formalized as a real-valued vector:

Ab ¼ ðR1;R2; . . .RN ; SÞ (2)

where R1;R2; . . .RN refer to the attributes (features) of antibody in terms of a series of spatial
variables and proximity variables. Here an antibody is initialized with a random number.
Specifically, each R in Equation (2) is initially set to be a random number between 0 and 1. S
is a Boolean variable in which the urbanized is 1 and the non-urbanized is 0.

Affinity refers to the binding degree of an antibody with an antigen. The affinity between
an antigen and an antibody can be measured by the distance between the two vectors in the
attribute space. In this study, affinity is calculated as follows:

Afgb ¼
1

1þ dðAg;AbÞ (3)

where Afgb is affinity and dðAg;AbÞ is the distance between an antigen and an antibody.
In this study, d(Ag, Ab) is calculated using an Euclidean distance:

dðAg;AbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1
ðai � RiÞ2

vuut (4)

3.3. Clonal selection and mutation

During the evolution, the antibodies are evaluated using an affinity function and ranked in a
descending order based on their affinity values. The m antibodies with the highest affinities
are selected for the cloning operation. For each selected antibody to be cloned, the higher its
affinity is, the larger the number of clones will be generated for it. The total number of clones
generated for all these m selected antibodies is given by the following equation:

Mc ¼
Xm
h¼1

round
G�M

h

� �
(5)

where round(.) is the operator that rounds its argument toward the closest integer, M is the
total number of antibodies,G is a multiplying factor to control the total number of antibodies
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of the new generation, and h is the antibody current rank where h P [1, m], m is the number
of selected antibodies for the cloning operation.

Each term of this sum corresponds to the clone size of each selected antibody. For
example, for M = 200 and G = 0.5, the highest affinity antibody will produce 100 clones,
while the second highest affinity antibody produces 50 clones, and so on. After cloning, the
clones are mutated to increase their diversity. The degree of mutation for an antibody is
inversely proportional to the affinity of that antibody: The higher the affinity the lower the
degree of mutation. The mutation performed in this study can be represented as follows:

Rt
i ¼

Rt�1
i ; if Afgb=B � r

Rt�1
i � ð1� e�dðAg; AbÞÞðRt�1

i � aiÞ; if Afgb=B<r

(
(6)

where t is an indication of generation, and thus Rt�1
i is an attribute value of an antibody of the

last generation and Rt
i is its counterpart in the new generation; B is a constant greater than 1

for controlling the antibody’s mutation probability; r is a random number within (0–1); and
ai is the corresponding attribute value of a training antigen.

Through clonal selection, antibodies with low affinities will gradually be replaced by
new antibodies that are clones of those antibodies with high affinities. These clones will then
go through mutations that contain a certain degree of randomness in order to maintain the
diversity of the antibody library so that new areas of the search space can be explored. In this
way, the antibodies in the antibody library will gradually obtain increasingly higher affinities
to the sampled antigens, a process called affinity maturation. The clonal selection and
mutation repeat until a termination criterion is met or a predetermined generation number
is reached.

3.4. Estimating the probability of urban development using AIS

In the AIS-based CA model, empirical data from remote sensing and GIS (spatial distance
variables) are used to create the antigen library (i.e., the sample set). On the other hand, the
first generation of antibodies are created and initialized with random numbers. The anti-
bodies gradually get ‘matured’ through the clonal selection and mutation, as discussed in
Section 3.3. This process corresponds to the training stage in many other machine-learning
methods. The ‘matured’ antibodies can identify and memorize antigen structures. When
classifying an unknown cell in CA (in the form of an unknown antigen), first the affinity
between each antibody and the cell is calculated using Equation (3), and then the k antibodies
with the best affinities to the cell are used to determine the class (state) of the cell.
Commonly, the voting method is used, that is, the cell is assigned the majority class (state)
of its k best antibodies, which can be represented as follows:

f
^
ðiÞ  arg max

Xk
j¼1

�ðs; f ðAbjÞÞ;
� s; f ðAbjÞ
� �

¼ 1; if s ¼ f ðAbjÞ

� s; f ðAbjÞ
� �

¼ 0; if s�f ðAbjÞ

(
(7)

where k is the total number of the best antibodies (with highest affinities) to the queried cell
and s is the finite set of target class value. In this study, s represents the state of a cell (e.g., 1
for urbanized and 0 for non-urbanized). f ðAbjÞ is the class (state) of antibody j.

This method adopts a simple voting scheme in which the final result is determined
byf ðAbjÞ. Equation (7) only yields a Boolean value: a cell will be converted (urbanized) or
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not. In CA, however, conversion probability is often used to produce more plausible
simulation results (Wu 2002, Li and Liu 2006). In this study, a roulette wheel algorithm is
used to estimate the conversion probability:

PðiÞ ¼

Pk
j¼1

Af ðAbj; iÞ � �ðf ðAbjÞ; 1Þ

Pk
j¼1

Af ðAbj; iÞ � �ð f ðAbjÞ; 1Þ þ
Pk
j¼1

Af ðAbj; iÞ � �ðf ðAbjÞ; 0Þ
(8)

where Af ðAbj; iÞ is the affinity of antibody j to the queried cell i. This equation indicates that
the contribution of an antibody is determined by its affinity to the queried cell.Equation (8)
only concerns about the attributes of the queried cell. However, in reality a cell may also be
significantly influenced by other cells in its neighborhood. For example, more urbanized
cells in the neighborhood will increase the conversion probability of the cell under concern
(Batty and Xie 1994, Li and Liu 2006). In this study, the neighborhood influence is
incorporated as follows:

�ðiÞ ¼

P
3 · 3

N urbanðiÞð Þ

3 · 3� 1
(9)

where
P
3 · 3

N urbanðiÞð Þ refers to the total number of urbanized cells in a 3 · 3 neighborhood

window around the cell under concern. It is noted that neighborhood density changes along
with the simulation.

Furthermore, constraints such as rivers, steep slopes, and protected farm lands can be
incorporated into the probability estimation (White et al. 1997, Li and Yeh 2000, Liu and Li
2008). The final conversion probability can then become

PdevðiÞ ¼ A � PðiÞ � CðiÞ � �ðiÞ (10)

where C(i) is the combined constraint, �(i) is the percentage of urbanized cells in the
neighborhood, and A is an adjusting factor.

4. AIS-based CA by incorporating planning interventions

As discussed in the previous section, an AIS-based CAmodel can perform inertia simulation
if the historical trend in urban development continues in the future. In addition and more
importantly, an AIS is ‘open’ for allowing some kinds of interventions. This allows the user
to easily incorporate the inputs of planning policies into the transition rules through inter-
vening antibodies’ evolution. In other words, the user has the control to make antibodies to
evolve into a certain form that will construct transition rules by reflecting planning objec-
tives. In a land-use simulation, this means that the simulation does not have to be inertia that
is totally based on the historical trend, but can also incorporate policies specified by
planners. Through altering the structure and parameter values of the AIS-based CA model,
we can generate different simulated scenarios to answer ‘what if’ questions and explore and
evaluate various options (Figure 1).

There are many possible urban growth patterns, which are the main concerns of urban
planning. Urban forms are closely related to the efficient use of energy, capital, and land
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resources (Banister et al. 1997, Burchell et al. 1998). With an AIS-based CAmodel, the user
can design the selection and mutation mechanisms to incorporate planning intentions for
different urban development forms. In this section, we use the ‘city center’ growth as an
example to demonstrate how to embed planning policies into the AIS.

4.1. Incorporating planning policy by mutation

The ‘city-center’ growth means that the urban development is around city centers, resulting
in a monocentric form. This form reflects compact developments that are restrained within
small areas around cities. The ‘city-center’ policy has a clear planning intention to improve
efficiencies in land and energy utilizations. This planning policy can be easily incorporated
into the AIS by introducing constant thresholds about the distance to city into the mutation
mechanism. Specifically, we increase the mutation probability for an urbanized antibody if
its distance to a city is greater than a specified threshold; and meanwhile decrease the
probability for a non-urbanized antibody if it is distant to cities. This simple idea can be
easily implemented by altering Equation (6) as follows:

Rt
i ¼

Rt�1
i ; if Afgb=B � r and Rt�1

i � T1

Rt�1
i � ð1� e�dðAg; AbÞÞðRt�1

i � aiÞ; if Afgb=B< ¼ r or Rt�1
i >T1

(
(11)

Rt
i ¼

Rt�1
i ; if Afgb=B � r and Rt�1

i � T2

Rt�1
i � ð1� e�dðAg; AbÞÞðRt�1

i � aiÞ; if Afgb=B< ¼ r or Rt�1
i <T2

(
(12)

Figure 1. AIS-based CA model for urban planning.
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Equation (11) is for an urbanized antibody and Equation (12) is for a non-urbanized
antibody. In Equations (11) and (12), T1 and T2 are two constants serving as the thresholds
about the distance to city, and they indicate that the thresholds can be different for urbanized
and non-urbanized cells. With Equations (11) and (12), the mutation process is not only
controlled by affinity that represents the inertia trend, but also by user-specified thresholds
that represent external interventions or planning policies.

Some other planning intentions, for example, restraining development to be close to
roads and restraining development to be close to towns, can be embedded into the
mutation process in the same way, only replacing the distance to city in Equations (11)
and (12) with their corresponding variables (e.g., the distance to road and the distance to
town).

4.2. Incorporating planning policy by clonal selection

The clonal selection process can also take into account planning policies. To achieve that,
rather than to use only the affinity value to determine if an antibody will be selected for
cloning, the user can use a combined value that includes both the affinity and the measure-
ment representing the policy. Furthermore, the user can specify the weights for the two
components in the combined value. The values that determine the selection of an antibody as
antibodies are calculated as follows:

As ¼ a�Afgb þ b�e�d (13)

As ¼ a�Afgb þ b�ed (14)

Equations (13) and (14) are for urbanized antibodies and non-urbanized antibodies,
respectively. As is the value that determines the selection of an antibody as antibodies with
large As will be selected and retained in the antibody library. Variable d is the distance
variable. The second component is the measurement for addressing the city-center growth
policy. The weights of a and b reflect the relative importance of the affinity and the planning
policy, respectively. They are specified by the user. For example, the greater the ratio b/a, the
more important the planning policy in determining the selection.

Through the altered mutation and selection discussed above, antibodies for class
‘urbanized’ will gradually ‘mature’ and their values of the distance to certain features
(e.g., city) will gradually decrease. Meanwhile, antibodies for class ‘non-urbanized’ will
gradually ‘mature’ and their values of the distance to certain features will gradually
increase. The planning policy is embedded into the antibodies according to this clonal
selection process.

5. Model implementation and results

5.1. Study area and spatial data

The proposed AIS-based CA model was applied to the simulation of urban agglomeration
development in the Pearl River Delta in southern China. The study area is about 41,157 km2

in size, consisting of a hierarchy of cities with different scales of population and economic
development. Recent years have witnessed a considerable urban expansion due to the fast
economic development in this area. In this paper, the cellular space is represented as a regular
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lattice of two dimensions. The cellular state is a Boolean variable, which uses 1 to represent
the state of being urbanized and 0 for otherwise.

The actual land-use types in the years of 1988, 1993, 1996, 1999, and 2002 were
obtained by the classification of the TM satellite images. These empirical data were used
to derive transition rules. A series of spatial variables related to land development in 1988,
1993, 1996, and 1999 were prepared using GIS function. Figure 2 shows the actual land-use
and spatial variables in 1988. These spatial distances were calculated using the Eucdistance
function in ArcGIS. Then, a sampling procedure was employed to retrieve only a portion of
the original data as antigens by using a stratified sampling method (Congalton 1991), which
ensures that sampling effort can be distributed in a rational pattern so that a specific number
of observations are assigned to each category to be evaluated. The antigen library consists of
two classes of antigens: urbanized and non-urbanized.

The antigen library was updated to reflect the possible change in relationships by using
additional satellite images, the 1996 and 1999 TM images. Studies have indicated that the
land-development patterns of the study area have changed significantly in different periods
because of the variations in economic growth and land-use policies (Li and Liu 2006). At the
same time, the attribute part of the antigen, including proximity variables, was updated by
using these renewed variables in 1988, 1993, 1996, and 1999, which indicates that antigens
can reflect the dynamics of land use over time.

The proposed AIS-based CA model was implemented using Visual Basic 6.0 and
ArcObjects. ArcObjects provides access to spatial data as well as tools for distance calcula-
tion and focal operations. Visual Basic was used to calculate the transition rules and integrate
the different components in the model.

Figure 2. Various spatial variables prepared by a raster GIS.
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5.2. Simulation of urban agglomeration development in the Pearl River Delta

Transition rules obtained by using the AIS algorithm were applied to the simulation of urban
development in the Pearl River Delta. The antigen library contains a total of 9308 antigens,
including 4505 urban antigens and 4803 non-urban antigens. On the other hand, the first
generation of antibodies was created and all their attributes were initialized with random
numbers. The evolution of the antibodies started with the calculation of affinity between
each pair of antigen and antibody using Equation (3). There is no agreement on the optimal
number of antibodies selected for cloning operation (King et al. 2001). The 200 antibodies
were empirically derived after performing an exhaustive set, and the total number of clones
generated for all these selected antibodies is given by Equation (5). Finally, the antibodies
with higher affinity were retained in the antibody library, while the antibodies with low
affinities were replaced by new antibodies mutated through Equation (6). As shown in
Figure 3, the affinity becomes stabilized after the time of evolution is greater than 100, and
the affinity is 0.991 at this time, which indicates the maturity of the antibodies. Therefore, the
process stops when affinity reaches 0.991.

To test the capabilities of the evolving antibodies in identifying antigens, another 8370
samples were acquired through randomly sampling the remote-sensing classification data.
The test with these samples indicated that the identifying capabilities of the antibodies were
gradually improved as the antibodies are evolving. After 100 times of iteration, the cap-
ability tends to get stable (Figure 4).

Themature antibodies were then applied to the simulation of urban development with the
land use of 1988 as the initial state. The simulation was conducted in discrete temporal steps.
A sufficient number of steps are required to reveal the effects of spatial interactions and
produce details in the resulting spatial patterns. Although there is no consensus on the
optimal number of steps, 100–200 iterations are common in practice (Wu 2002, Li and Yeh
2004, Liu et al. 2008). The observation interval between remote-sensing images is generally
far greater than the iteration interval of CA simulation. It may be ideal if the observation
interval is equal or close to the iteration interval so that derived transition rules can be used
directly in urban simulation (Li and Yeh 2004). As a result, it is necessary to determine the
amount of land-use conversion in the iteration interval in CA models. The number of
iterations of CA models during the period of iteration is determinate according to the
research of Li and Yeh (2004). In our experiments, the urban development in the period of

Figure 3. The processes of affinity maturation for antibodies.
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1988–1993 and 1993–2002 was simulated by running the model for 200 and 400 iterations,
respectively.

Following Clarke et al. (1997) and White et al. (1997), we conducted visual inspections
to compare the simulation results and the actual situations derived from the TM data. It is
found that the simulated pattern and the actual one are very similar (Figure 5). A confusion
matrix was calculated to quantify the concordance between the simulated and the actual
development patterns (Table 1), as suggested by Li and Liu (2006). This matrix was obtained
based on a cell-on-cell spatial overlay of the two layers. The matrix reveals that the total
accuracies of the simulations are 85.3 and 81.3% for 1993 and 2002, respectively.

5.3. Simulating development alternatives for urban planning in the Pearl River Delta

In urban planning, a compact urban form is usually advocated as it improves efficiencies in
land and energy utilizations (Jenks et al. 1996, Li et al. 2008). Disorderly urban sprawl has
been widely criticized in both developed and developing countries. The planning and
management of urban growth need the quantitative measurement of urban forms. Land
development has taken place in a rather fragmented form in the Pearl River Delta (Li and Yeh
2004). The simulation of land development can allow planners to explore and evaluate
different planning options. Some planning policies or interventions can be incorporated in
the simulation for promoting more compact urban forms. The simulation explores six
planning scenarios: (1) ‘city-center’ growth: the developments are around city centers,
resulting in a monocentric form in an urban area; (2) ‘road-concentrated’ growth: the
developments are concentrated along roads; (3) ‘expressway-concentrated’ growth: the
developments are concentrated along expressways; (4) ‘town-center’ growth: the develop-
ments are around town centers, resulting in a polycentric form; (5) ‘city-center and express-
way’ growth: the developments are concentrated both around city centers and along
expressways; and (6) ‘town-center and road’ growth: the developments are concentrated
both around town centers and along roads.

Specified mutation and selection processes were designed for each scenario. For exam-
ple, 11–14 describe the mechanism of mutation and selection for antibodies under the
scenario of ‘city-center’ growth. Similar to the ‘city-center’ growth, other planning scenarios
were obtained by just modifying the parameters of Equations (11) and (12) (Table 2).

Figure 4. The improvement process of identification capabilities for antibodies.

794 X. Liu et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
L
i
u
,
 
X
i
a
o
p
i
n
g
]
 
A
t
:
 
0
1
:
0
2
 
1
4
 
A
p
r
i
l
 
2
0
1
0



Figure 5. Simulated and actual urban development in the Pearl River Delta in 1988, 1993, and 2002.
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As shown in Figure 6, the average distance to city centers is gradually decreased at a
large scale, which implies that the evolution of antibodies can fully and correctly represent
planners’ intention. In the simulation of inertia growth scenarios, urban development also
shows a trend toward the city centers. However, this trend is not remarkable (Figure 6).
Through altering the evolution process (training) of antibodies, planning policies can be
integrated into the AIS algorithm, and the planner can generate different simulated scenarios
to answer ‘what if’ questions and explore and evaluate various options.

Based on the six planning scenarios designed for urban development, by altering the
mechanism of mutation and selection for antibodies, the planning policies were embedded
into the AIS algorithm. Urban-development probability is calculated by using Equation (10).
The urban-development pattern from 1988 to 2002 is then simulated by running this
planning model with 600 iterations under different planning scenarios (Figure 7). It can be
seen from Figure 7 that the simulated planning scenarios can well reflect the predefined
planning policies.

The evaluation of urban morphology can help identify suitable planning schemes for
producing compact development. The assessment is carried out by using some common
landscape metrics, which can provide a detailed description of the accuracy of the model’s
historical simulations (Herold et al. 2003). In this study, these metrics include number of
patches (NP), area-weighted mean patch fractal dimension (AWMPFD), patch edge density
(ED), landscape shape index (LSI), and aggregation index (AI). These metrics can be
calculated by using a landscape analysis package, FRAGSTATS 3.3. The indicators of NP,

Table 2. Values of different parameters under various planning scenarios in the Pearl River Delta.

Simulation scenarios T1 T2 B

City center 60.0 124.0 1.5
Road-concentrated 46.0 82.0 1.5
Expressway-concentrated 54.0 102.0 1.5
Town center 43.0 78.0 1.5
City center and expressway 60.0 124.0 1.5

54.0 102.0 1.5
Town center and road 43.0 78.0 1.5

46.0 82.0 1.5

Table 1. Simulation accuracies of the AIS-based CA model for the Pearl River Delta.

1988–1993 (cells)

Simulated 1993 non-urban Simulated 1993 urban Accuracy

Actual 1993 non-urban 473,326 61,667 88.5%
Actual 1993 urban 32,454 70,953 68.6%
Total accuracy 85.3%

1988–2002 (cells)

Simulated 2002 non-urban Simulated 2002 urban Accuracy

Actual 2002 non-urban 429,098 69,172 86.1%
Actual 2002 urban 49,974 90,155 64.3%
Total accuracy 81.3%
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AWMPFD, and ED can be used for evaluation of landscape fragmentation; AWMPFD and
LSI can be used for complexity measurement of landscape shape; and AI can be used for
evaluation of landscape compactness.

NP can be calculated as follows:

NP ¼ N (15)

where N is the total number of patches. The bigger theNP, the higher the degree of landscape
fragmentation.

AWMPFD is given as follows:

AWMPFD ¼
Xm
i¼1

Xn
j¼1

2 lnð0:5PijÞ
lnðaijÞ

� aij
A

�	 

(16)

where Pij is the perimeter of the patch, aij is the area of the patch, and A is the total area of the
landscape.

ED is represented by the following equation:

ED ¼ 106 � E
A

(17)

where E refers to the total length of all patch edges and A refers to the total area of the
landscape. The more fragmented the landscape, the higher the value of ED.

LSI is expressed as follows:

LSI ¼ 0:25Effiffiffi
A
p (18)

where E is the total length of all patch edges and A is the total area of the landscape. The more
complex the landscape shape, the higher the value of LSI.

AI can be calculated by using the following equation:

AI ¼ 100�
gii

maxðgiiÞ

	 

(19)

Figure 6. The change of average distance to city center for antibodies.
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where gii is the number of like adjacencies (joins) between pixels of patch type (class) i based
on the single-count method. maxðgiiÞ is the maximum number of like adjacencies (joins)
between pixels of patch type (class) i based on the single-count method. If the same type of
patches is highly joined together, AI would be very high.

Table 3 shows landscape indices of different simulation scenarios in the Pearl River
Delta. Some interesting results can be found as follows:

Figure 7. Simulated results of different planning scenarios in the Pearl River Delta.
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(1) Urban forms resulted from ‘city-center’ and ‘city-center and expressway’ growth
models appear to be more compact and less fragmented, while urban forms resulted
from ‘town-center’ and ‘road-concentrated’ growth models appear to be more
disordered and more dispersed.

(2) The actual urban form is very close to that of inertia growth scenario. This means
that the AIS method can have a good performance in discovering reliable transition
rules of CA models.

6. Conclusions

The preparation of various development scenarios is important in urban and regional
planning. The simulation can help planners and decision makers test and compare what
can be gained under different planning policies. CA models have been increasingly used in
urban simulation. However, most urban CA models assume that the historical trend will
continue into the future and ignore possible external interventions, particularly planning
policies. Therefore, there are very limited studies in applying them to urban planning.

This study proposes a new kind of urban simulation models for generating development
scenarios by integrating AIS, CA, and GIS. This proposed method can conveniently gen-
erate development alternatives through modifying the mutation mechanism according to
different planning policies. Planning policies can be integrated into the AIS algorithm by
altering the mechanism of antibody evolution. Antibody will ‘evolve’ gradually toward the
predefined planning policies that are specified by urban planners. Altering the AIS-based
CA model structure and input parameters, different growth scenarios can be generated and
evaluated, and ‘what if’ questions can be answered. This proposed model can help planners
and decision makers test and compare what can be gained under different planning policies.
It provides a useful exploratory tool for testing various planning scenarios for urban
development.

The proposed AIS-based CA model was applied to the simulation of urban agglomera-
tion development in the Pearl River Delta in southern China. Fast urban expansion has
occurred in the 1990s due to the fast economic development in the study region. The actual
urban areas in the years of 1988, 1993, and 2002 were obtained by the classification of the
TM satellite images, which is used to discover transition rules based on the AIS algorithm.
The simulated and actual patterns are very similar through visual inspections and cell-by-cell
comparisons. The Pearl River Delta consists of a hierarchy of fast growing cities, such as
Shenzhen, Dongguan, and Guangzhou. However, the AIS-based CA can produce very
plausible simulation results for this region, which indicates that this model is appropriate
to simulate urban development in large regions.

Table 3. Landscape indices of different simulation scenarios in the Pearl River Delta.

Simulation scenarios NP AWMPFD ED LSI AI

City center 10,583 1.283 10.447 37.564 91.622
Road-concentrated 11,459 1.294 11.373 41.893 87.786
Expressway-concentrated 10,981 1.291 10.779 39.755 90.422
Town center 11,284 1.293 10.949 41.292 87.639
City center and expressway 10,743 1.279 10.291 37.003 91.763
Town center and road 11,643 1.295 11.484 42.290 87.687
Actual development 20,840 1.345 23.404 85.152 78.937
Inertia growth scenario 18,260 1.341 21.606 84.588 80.269
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Meanwhile, six different urban growth scenarios were designed in this study. The
proposed AIS-based CA planning model was used to simulate urban development in the
Pearl River Delta under different planning schemes (1988–2002). This model provides a
useful method to create different urban forms such as ‘city center’, ‘town center’, and ‘road-
concentrated’ growth patterns. A number of spatial metrics were used to measure the
morphology of simulated results. Experiments demonstrate that the ‘city-center’ and the
‘city-center and expressway’ growth modes are more compact and less fragmented. In
contrast, the ‘town-center’ and the ‘road-concentrated’ growth modes are disordered and
dispersed. This study indicates that CA can not only provide useful knowledge in under-
standing urban development processes but is also able to assist land use planning by
incorporating planning objectives in the simulation.

The proposed AIS-based CA model enables planners and stakeholders to assess the
future outcomes of current planning policies in large regions and investment choices
before they are put into action. However, these planning policies used in this model are
development preferences at the scale of local transition rules. Future effort will be
focused on integrating local-scale and global-scale planning policies into AIS-based
CA model, such as socioeconomic factors associated with administrative boundaries
and census district.
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